
1 The heat equation.

We solve the boundary eigenvalue problem1:

∂u(x, t)
∂t

− k
∂2u(x, t)

∂x2
= 0, 0 < x < l, t > 0,

u(0, t) = u(l, t) = 0, t > 0,

u(x, 0) = x,

where k and l are physical constants. By the separation of variables, we assume a solution
of the form u(x, t) = X(x)T (t), where X(x) represents the spatial and T (t) the temporal
component, respectively. Upon substitution in the equation we have

Ṫ (t)
T (t)

= k
X ′′(x)
X(x)

= −λ,

where the functions are equal only if both are equal to some constant denoted by −λ. The
minus sign is for convenience as we seek an imaginary solution that is convertible to a series
of sines and cosines. Generally one chooses the spatial ordinary differential equation first
because its eigenfunctions will be more fundamental in the resulting separation of variables
solution.

Rearranging in a more familiar form, the ODE is

X ′′(x) =
−λ

k
X(x).

Letting D = d
dx and substituting back into the equation, we have

D2 =
−λ

k
,

or

D = ±

√
−λ

k
= ± i

√
λ

k
.

Then

X(x) = c′1e
i
√

λ
k

x + c′2e
−i
√

λ
k

x

= c′1

(
cos

√
λ

k
x + i sin

√
λ

k
x

)
+ c′2

(
cos

√
λ

k
x− i sin

√
λ

k
x,

)

where c′1 and c′2 denote arbitrary imaginary constants. Multiplying through and combining,
the solution is

X(x) = c1 cos

√
λ

k
x + c2 sin

√
λ

k
x,

where c1 = c′1 + c′2 and c2 = i(c′1 − c′2).
1See Gustafson pp. 38-9.
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Applying the boundary conditions at u(0) and u(l) we have

0 = c1

and

0 = c2 sin

√
λ

k
l

or

λn =
n2π2

l2
k,

where the eigenvalues correspond to integers n = 1, 2, 3, ..., and where the arcsine of zero
is equal to ±nπ. These acquired eigenvalues λn determine the temporal factors which we
immediately integrate to get:

dT (t)
T (t)

= −λT (t),

hence
Tn(t) = dne−λnt.

Substituting the results:

u(x, t) =
∞∑

n=1

cn sin
nπx

l
e−

n2π2k
l2

t, (1)

where the constant dn was absorbed into cn. Forming the linear superposition provides our
formal separation of variables solution. Applying the third boundary condition (u(x, 0)), we
have

x =
∞∑

n=1

cn sin
nπx

l
e−

n2π2k
l2

t.

Solving for the Fourier coefficients we multiply both sides by sin mπx
l and integrate (because

if the functions are equal, the integral of the functions are equal too) to get∫ l

0
x sin

mπx

l
dx =

∫ l

0
cn sin

nπx

l
sin

mπx

l
dx.

Recall the right-hand side (RHS) integral is zero if m 6= n and not zero if m = n. Letting
m = n we have ∫ l

0
x sin

nπx

l
dx =

∫ l

0
cn sin2 nπx

l
dx.

A simple way of evaluating the RHS is to observe that sin2 θ+cos2 θ
2 = 1. Adding cos2 nπx

l
and dividing by 2, the RHS integral reduces to

cn

∫ l

0

1
2

dx.

Integrating the RHS and solving for the Fourier coefficient

cn =
2
l

∫ l

0
x sin

nπx

l
dx.
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Integrating by parts we let u = x, du = dx, dv = sin nπx
l , and v = − l

nπ cos nπx
l . Then

cn =
2
l

[
− xl

nπ
cos

nπx

l
+

l2

n2π2
sin

nπx

l

]∣∣∣∣∣
l

0

=
−2l

nπ
cos nπ =

2l

nπ
(−1)n+1.

The final solution is then

u(x, t) =
2l

π

∞∑
n=1

(−1)n+1

n
sin

nπx

l
e−

n2π2k
l2

t. (2)

Note that the physical scales are reflected in the eigenfunctions, decay rates, and Fourier
coefficients of the solution.
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