1 The heat equation.

We solve the boundary eigenvalue $problem¹$:

$$
\frac{\partial u(x,t)}{\partial t} - k \frac{\partial^2 u(x,t)}{\partial x^2} = 0, \quad 0 < x < l, \quad t > 0,
$$
\n
$$
u(0,t) = u(l,t) = 0, \quad t > 0,
$$
\n
$$
u(x,0) = x,
$$

where k and l are physical constants. By the separation of variables, we assume a solution of the form $u(x,t) = X(x)T(t)$, where $X(x)$ represents the spatial and $T(t)$ the temporal component, respectively. Upon substitution in the equation we have

$$
\frac{\dot{T}(t)}{T(t)} = k \frac{X''(x)}{X(x)} = -\lambda,
$$

where the functions are equal only if both are equal to some constant denoted by $-\lambda$. The minus sign is for convenience as we seek an imaginary solution that is convertible to a series of sines and cosines. Generally one chooses the spatial ordinary differential equation first because its eigenfunctions will be more fundamental in the resulting separation of variables solution.

Rearranging in a more familiar form, the ODE is

$$
X''(x) = \frac{-\lambda}{k} X(x).
$$

Letting $D = \frac{d}{dx}$ and substituting back into the equation, we have

$$
D^2 = \frac{-\lambda}{k},
$$

or

$$
D = \pm \sqrt{\frac{-\lambda}{k}} = \pm i \sqrt{\frac{\lambda}{k}}.
$$

Then

$$
X(x) = c'_1 e^{i\sqrt{\frac{\lambda}{k}}x} + c'_2 e^{-i\sqrt{\frac{\lambda}{k}}x}
$$

= $c'_1 \left(\cos \sqrt{\frac{\lambda}{k}} x + i \sin \sqrt{\frac{\lambda}{k}} x \right) + c'_2 \left(\cos \sqrt{\frac{\lambda}{k}} x - i \sin \sqrt{\frac{\lambda}{k}} x \right)$

where c'_1 and c'_2 denote arbitrary imaginary constants. Multiplying through and combining, the solution is

$$
X(x) = c_1 \cos \sqrt{\frac{\lambda}{k}} x + c_2 \sin \sqrt{\frac{\lambda}{k}} x,
$$

where $c_1 = c_1' + c_2'$ and $c_2 = i(c_1' - c_2').$

 $\frac{1}{1}$ See Gustafson pp. 38-9.

Applying the boundary conditions at $u(0)$ and $u(l)$ we have

 $0 = c_1$

 $0 = c_2 \sin \sqrt{\frac{\lambda}{L}}$

 $\lambda_n = \frac{n^2 \pi^2}{l^2}$

 $\frac{\gamma}{k}$ l

 $\frac{n}{l^2}$ k,

and

or

where the eigenvalues correspond to integers
$$
n = 1, 2, 3, \ldots
$$
, and where the arcsine of zero is equal to $\pm n\pi$. These acquired eigenvalues λ_n determine the temporal factors which we immediately integrate to get:

$$
\frac{dT(t)}{T(t)} = -\lambda T(t),
$$

hence

 $T_n(t) = d_n e^{-\lambda_n t}.$

Substituting the results:

$$
u(x,t) = \sum_{n=1}^{\infty} c_n \sin \frac{n\pi x}{l} e^{-\frac{n^2 \pi^2 k}{l^2}t},
$$
\n(1)

.

where the constant d_n was absorbed into c_n . Forming the linear superposition provides our formal separation of variables solution. Applying the third boundary condition $(u(x, 0))$, we have

$$
x = \sum_{n=1}^{\infty} c_n \sin \frac{n \pi x}{l} e^{-\frac{n^2 \pi^2 k}{l^2} t}
$$

Solving for the Fourier coefficients we multiply both sides by $\sin \frac{m\pi x}{l}$ and integrate (because if the functions are equal, the integral of the functions are equal too) to get

$$
\int_0^l x \sin \frac{m\pi x}{l} dx = \int_0^l c_n \sin \frac{n\pi x}{l} \sin \frac{m\pi x}{l} dx.
$$

Recall the right-hand side (RHS) integral is zero if $m \neq n$ and not zero if $m = n$. Letting $m = n$ we have

$$
\int_0^l x \sin \frac{n\pi x}{l} dx = \int_0^l c_n \sin^2 \frac{n\pi x}{l} dx.
$$

A simple way of evaluating the RHS is to observe that $\frac{\sin^2 \theta + \cos^2 \theta}{2} = 1$. Adding $\cos^2 \frac{n \pi x}{l}$ and dividing by 2, the RHS integral reduces to

$$
c_n \int_0^l \frac{1}{2} \, dx.
$$

Integrating the RHS and solving for the Fourier coefficient

$$
c_n = \frac{2}{l} \int_0^l x \sin \frac{n \pi x}{l} dx.
$$

Integrating by parts we let $u = x$, $du = dx$, $dv = \sin \frac{n\pi x}{l}$, and $v = -\frac{l}{n\pi}$ $\frac{l}{n\pi}$ cos $\frac{n\pi x}{l}$. Then

$$
c_n = \frac{2}{l} \left[-\frac{xl}{n\pi} \cos \frac{n\pi x}{l} + \frac{l^2}{n^2 \pi^2} \sin \frac{n\pi x}{l} \right]_0^l
$$

$$
= \frac{-2l}{n\pi} \cos n\pi = \frac{2l}{n\pi} (-1)^{n+1}.
$$

The final solution is then

$$
u(x,t) = \frac{2l}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n\pi x}{l} e^{-\frac{n^2 \pi^2 k}{l^2} t}.
$$
 (2)

Note that the physical scales are reflected in the eigenfunctions, decay rates, and Fourier coefficients of the solution.